Economic prediction in real-time?

or an agent-based model with Ensemble Kalman Filter for the US wealth distribution

By Yannick Oswald, University of Leeds with Nick Malleson, Keiran Suchak

Agenda

- Motivation
- Models
- Ensemble Kalman Filter and Data assimilation
- First results
- Discussion

Background of work – DUST project

- data assimilation for agentbased modelling

- mostly in Urban Analytics
- led by Nick Malleson

m

Traditionally economic data is slow

and

Economic models focus on "slow"/long-term processes

YO, GENED meeting Oct. 2023, Bamberg

page 4 of 26

Example: Economic growth

Today the economy is almost monitored in real-time

And models focus also on high-frequency processes

Home > Economy > Economic output and productivity > Output > Economic activity and social change in the UK, real-time indicators

Economic activity and social change in the UK, real-time indicators: 14 September 2023

Early experimental data on the UK economy and society. These faster indicators are created using rapid response surveys, novel data sources and experimental methods.

This is the latest release. <u>View previous releases</u>

You Work In 👻 Data 👻 Products 👻 Insights 👻 Supj

Our brand is changing to LSEG. Learn more about the changes to our brand

Home / Data Catalogue / Economic Data / Real Time Economic Indicators

Example: **Daily** Credit card spending in the UK

Source: https://www.ons.gov.uk/economy/economicoutputandproductivity/output/datasets/ukspendingoncreditanddebitcards

There is much work in economics, especially in econometrics, focusing on high frequency forecasting already.

Yet overall in theoretical models this is still underdeveloped.. And also...

Problem 1:

How do you model such fast-paced processes/data?

Problem 2:

What if a model quickly diverges from reality?

Our use case: American Wealth inequality

Two agent-based models to explain this

Model 1 – by Vallejos, Nutaro, and Perumalla (2018) Not really an ABM, rather individual-based

Back to problem #2: What do we do when a model does not fit the data?

Option 1: Recalibrate

Option 2: Change the model

Option 3: Data assimilation = update the internal model state based on observations

A brief note on data assimilation and weather

The Kalman Filter

Very general idea

$$X_{estimate,t+1} = (1 - K) * X_{model,t} + K * X_{obs,t}$$

System	$X_{estimate,t+1} =$	$(1 - K) * X_{model,t} +$	$K * X_{obs,t}$
Rocket	Position	Law of motion	Position obs.
Economic growth	GDP	"Law" of growth	Economic activity obs.
Wealth inequality	Some inequality metric	"Law" of distribution /ABM in our case	Wealth classes obs.

The Kalman Filter considers uncertainty

The Kalman Filter is optimal because weights K minimize uncertainty

If Variance model < Variance Obs then (1-K) > K

The Ensemble Kalman Filter takes uncertainty from an ensemble of models and an ensemble of observations

From Ensemble of ABMs

Model and observation are not necessarily of the same dimensionality

$$X_{estimate,t+1} = (1-K) * X_{model,t} + K * X_{obs,t}$$

$$\begin{bmatrix} top 1\% \\ middle 40\% \\ bottom 50\% \end{bmatrix} \longleftrightarrow \begin{bmatrix} agent_1 \\ agent_2 \\ \vdots \\ agent_n \end{bmatrix} \bigoplus \begin{bmatrix} top 1\% \\ middle 40\% \\ bottom 50\% \end{bmatrix}$$

Ensemble of simulation runs model 1

Ensemble of simulation runs with ENKF – unfinished work, not robust yet

Discussion and outlook

• Does the filter work correctly?

• Is the micro-macro translation correctly?

We want to test the method during crisis moments like the pandemic 2020

• We hope that this inspires more data-assimilation-based control in economic forecasting