

Using Approximate Bayesian Computation to Infer Disease Parameter Uncertainty in a COVID-19 Microsimulation

Molly Asher¹, Yannick Oswald², Nick Malleson²

¹ School of Earth and Environment, University of Leeds ² School of Geography, University of Leeds

This work: https://www.nature.com/articles/s41598-023-35580-z

Title image: https://www.camecon.com/blog/modellingthe-local-economic-impacts-of-thecoronavirus/

Individual based models

- e.g. Agent-based models, dynamic microsimulation
 > Oxford model, Imperial model
- A hope for escaping uncertainty that Covid-19 brought!

Challenges!

Model uncertainty

- Structural model uncertainty
 - System complicated
- Scenario uncertainty
 - Pandemic constantly evolving dynamics
 - Changing vaccination rates
 - o New variants
 - Different testing approaches
 - Policy interventions
- Stochastic uncertainty
 - Even a perfectly calibrated model will diverge from reality
- Parameter uncertainty
 - > Behaviour of Covid unknown; data limited

Challenges!

- Parameter uncertainty
 - Behaviour of Covid unknown; data limited

Challenges! Solutions?

- Parameter uncertainty
 - > Behaviour of Covid unknown; data limited increasingly available

	Scientific reports
Approximate Bayesian Computation:	A supproximate Bayesian
 Better understand parameters and uncertainty Better quantification of uncertainty in predictions 	edvar stansk a starte og preder for an en

Spooner, F., Abrams, J.F., Morrissey, K., Shaddick, G., Batty, M., Milton, R., Dennett, A., Lomax, N., Malleson, N., Nelissen, N. and Coleman, A., 2021. A dynamic microsimulation model for epidemics. *Social Science & Medicine*, *291*, p.114461.

Dynamic Model of Epidemics (DyME)

- Produce a synthetic population
 - Using census data

DyME

- Give the population characteristics
 - Using travel + health surveys
- Each model day...
 - Individuals visit locations (home, work, retail, school)
 - They give/receive risk
 - New disease states calculated daily

Stage 3. Disease Status Estimation

Spooner, F., Abrams, J.F., Morrissey, K., Shaddick, G., Batty, M., Milton, R., Dennett, A., Lomax, N., Malleson, N., Nelissen, N. and Coleman, A., 2021. A dynamic microsimulation model for epidemics. *Social Science & Medicine*, *291*, p.114461.

DyME Dynamic Model of Epidemics (DyME)

Individual hazard

parameters:

- Presymptomatic
- Symptomatic
- Asymptomatic

Stage 3. Disease Status Estimation

Location

parameters:

- Retail
- Primary school
- Secondary school
- Work
- Home

Spooner, F., Abrams, J.F., Morrissey, K., Shaddick, G., Batty, M., Milton, R., Dennett, A., Lomax, N., Malleson, N., Nelissen, N. and Coleman, A., 2021. A dynamic microsimulation model for epidemics. Social Science & Medicine, 291, p.114461.

DyME: Process

Spooner, F., Abrams, J.F., Morrissey, K., Shaddick, G., Batty, M., Milton, R., Dennett, A., Lomax, N., Malleson, N., Nelissen, N. and Coleman, A., 2021. A dynamic microsimulation model for epidemics. *Social Science & Medicine*, *291*, p.114461.

Dynamic recalibration: ABC

Approximate Bayesian Computation (ABC)

DyME: Covid

A method for estimating unknown parameter values, given the data

Parameters

e.g. location parameters (but there are more)

<u>Generative</u> model

Data

Dynamic recalibration: ABC

Dynamic recalibration: ABC

A "guess" of possible parameter values

Retail Active definition of the second of t

Location parameters: a multiplier describing how likely someone is to get covid in that location

Accept or reject parameters based on similarity to observed data

Similarity? Based on Euclidean distance

Similarity? Based on Euclidean distance

Uncertain parameters

Each parameter value is:

A multiplier describing how likely someone is to get covid in that location

Demonstrate <u>how uncertain</u> and <u>how important</u> each of the parameter values is

Uncertain predictions

Uncertainty evolution

h

Uncertainty evolution

1. Illustration of how uncertainty changes over time (very uncertain at first, less certain as we get more data)

Parameter evolution

 Show how importance of parameters change over time

Parameter evolution

- Show how importance of parameters change over time
- 2. Allow quantification of parameter uncertainty

Parameter evolution

- Show how importance of parameters change over time
- 2. Allow quantification of parameter uncertainty

Conclusions

Dynamic recalibration of an individual based model is possible, and:

- Preliminary results, but, proof of concept that ABC with ABM:
 - Allow new data to be used as it arises
 - Allows us to understand uncertainty in our predictions and the parameter values driving the model behind them