

Predicting Pedestrian Counts using Machine Learning

Molly Asher¹, Yannick Oswald², Nick Malleson²

¹ School of Earth and Environment, University of Leeds ² School of Geography, University of Leeds

These slides: https://urban-analytics.github.io/dust/presentations.html

Accurately predicting number of pedestrians is both important and challenging

Aims and objectives:

This work is using machine learning to:

- Better understand the impact of the built environment and other contextual factors on pedestrian counts
- Predict the number of pedestrians at un-sampled locations under different conditions
- Evaluate the success of past events

Melbourne Open Data

- Melbourne Open Data Portal for open data:1
 - Land-use, litter, built environment, roads, bike sharing, air quality, etc.
- Network of pedestrian sensors:
 - 18 sensors in 2009
 - 82 sensors in 2022
- Record bi-directional pedestrian movements 24h/day every hour

Locations of sensors in the City of Melbourne¹

Melbourne Open Data

Example buffer zone within which spatial features are linked to sensors

- Numerous additional open data sets, including:
 - Weather
 - Street furniture (benches, bins etc)
 - Buildings
 - Landmarks
- Buffer zones drawn around sensors to link them to features describing urban environment in vicinity

Modelling Overview

- Dependent variable:
 - number of pedestrians per sensor per hour
- Explanatory variables:
 - time of day (hour, day, month, year)
 - weather conditions (temperature, humidity, wind speed)
 - road betweenness (a measure of how well integrated the nearest road is to the rest of the network)
 - local built environment variables (number of trees, benches, buildings, public transport, etc., etc.)
- Trained on available sensor data (4 million rows)
- Later used to predict at locations without sensors

Model selection

- Candidate models evaluated using 10-fold cross-validation
- Error metrics (RMSE and MAE) calculated on the predicted counts-per-hour of pedestrians from 10-fold cross-validation of each model against actual values from the sensor data

Error metrics Model RMSE MAE Linear 268.40 370.54 regression Random 89.88 179.62 Forest regression XGBoost 121.35 207.40

Model selection

- Candidate models evaluated using 10-fold cross-validation
- Error metrics (RMSE and MAE) calculated on the predicted counts-per-hour of pedestrians from 10-fold cross-validation of each model against actual values from the sensor data

	Error metrics	
	1	
Model	MAE	RMSE
Linear regression	268.40	370.54
Random Forest regression	89.88	179.62
XGBoost	121.35	207.40

Random forest regressor selected as best performing model

Model evaluation

- Predicted counts-per-hour of pedestrians plotted against actual values from the sensor data
- Most predictions fall around the diagonal (x=y), giving confidence that model is not biased towards smaller or larger counts

Random forest regressor

Spatial variation

Central and southern sensors capture highest footfall Patterns of absolute error follow (roughly) the mean, with some deviations Several sensors with much larger percentage error

Temporal variation

Feature importance

- Ranks features contribution to the model's predictions
- Most important features:
 - Hour of day
 - Landmarks (mixed, community use, places of worship)

- Weekday
- Educational buildings
- (surprisingly) lower importance features:
 - Betweenness
 - School/public holiday

Evaluating events

- Model can be used as a tool to evaluate success of events
- E.g. Anzac Day Parade:
 - 5% more footfall in whole city over 24h
 - 72% more footfall from 3-10am
 - 128% more footfall at a sensor in south-east near parade location

Conclusions

- Ongoing work aiming to:
 - accurately predict the number of pedestrians in time and space at un-sampled locations under different conditions
 - better understand the impact of the built environment and other contextual factors on pedestrian counts
 - Evaluate the success of past events
- Model performs reasonably well overall
- Some spatial and temporal variations in prediction error
- Beginning to make inferences about impact of urban environment

Predicting Pedestrian Counts using Machine Learning

Molly Asher¹, Yannick Oswald², Nick Malleson²

¹ School of Earth and Environment, University of Leeds ² School of Geography, University of Leeds

These slides: https://urban-analytics.github.io/dust/presentations.html

