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Overview

1. Why estimates of the ambient population need to be developed

2. The ambient population and crime analysis

3. Identifying suitable data sources

4. Towards a comprehensive model of the ambient population

5. Ambient Populations for Smart City Simulations
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Why are ambient populations
important?

* Crime (examples to follow)

* Planning and infrastructure

* Local economy

* Disease spread

* Transport

* Event management

* Emergencies and public safety
* Etc.
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Research Questions

Are crime hot spots stable under the
application of different population-at-risk
measures?

Which areas have the highest crime rates
under different denominators?

Data:
Residential population (census)

Geo-located tweets
Publicly-available crime data (‘violent crime’)

Methods: GI* & GAM
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Malleson, N. and M. Andresen (2015) The impact of using social media data in crime rate calculations: shifting
hot spots and changing spatial patterns. Cartography and Geographic Information Science : 42(2) 112-121



Shifting Hotspots

Results: city-centre hotspot disappears

“... despite the high volume of violent
criminal events, there is not a statistically
significant elevation in risk ... . No such
conclusion would have been reached with
the residential population.”

But what about temporal changes?
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Spatio-Temporal Hotspot Analysis

Aim
Identify significant crime clusters (taking account of the A

ambient population) and explore their spatio-temporal
dynamics.

Time

Data:
Residential population (census)
Geo-located tweets

Sensitive crime data (‘street crime’: theft from person
and robbery)

Methods: Space-Time Scan Statistics (SaTScan)



Spatio-Temporal Hotspot
Analysis

Results: the city-centre hotspot reappears!

Cluster (A)
Small city-centre area (shops, bars, etc.)

Saturday, 10:00 —17:00

Cluster (B)
Larger cluster includes campus and student residences

Saturday, 21:00 — 02:00
Different populations of victims

But are there other, better, data sources?
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Alternative Data Sets

Aim: evaluate 5 ambient population
measures to find the most highly correlated
with crime

Data:

Ambient population: census (residential and
workday), Twitter, mobile telephones, Pop24/7

Crime: Publicly-available crime data (‘theft from
person’)

Points of interest: Open Street Map

Methods: correlation & GI*
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Malleson, N., and Andresen, M.A. (2016) Exploring the impact of ambient
population measures on London crime hotspots. Journal of Criminal Justice 46
pp 52-63. (Open access) http://dx.doi.org/10.1016/j.jcrimjus.2016.03.002)
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Alternative Data Sets

LSOA correlations
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Crime Analysis and the Ambient
Population

These studies highlight why estimates of the ambient
population are important, but also raise several key
guestions:

* Which data are the best proxies?

* Are the data representative of the whole ambient
population?

e How accurate are the data?




Data for Modelling Ambient Populations

Remote Mobile phone
Census data : Travel surveys -
sensing activity data

Cell tower Mobility Footfall
locations reports EINEER

Wi-Fi sensors




Estimates of the Ambient Population: Assessing the
Utility of Conventional and Novel Data Sources

ISPRS International Journal of Geo-Information
Annabel Whipp, Nick Malleson , Jonathan Ward and Alison Heppenstall

https://www.mdpi.com/2220-9964/10/3/131
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Towards Holistic Ambient
Population Quantification

 Validate data sources using manual counts

* Build an estimate of the ambient population without
replicating groups of individuals

* Predict the ambient population in locations
without cameras or counters



Geographically weighted regression

Spatial data are often spatially autocorrelated

Unlike a global regression model, in a GWR model the relationship
between the dependent and independent variables can vary across space

A daytime model and a night-time model will be developed

The results will be validated using manual counts



Geographically weighted regression - Data

Workday
population

2011 Census

Daytime/night_ The counts from
time 8 footfall

_ cameras in Leeds
population city centre

Shops, bus stops,
Wi-Fi hotspots,
cafes, bars, train

station













Agent-Based Simulation of a Social System

Data assimilation
Model state adjusted in response to
new data

Model State
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Log(n) Number of Particles

Data Assimilation for Agent-Based Models

Median mean error (after resampling)
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Data Assimilation for
Agent-Based Models

DUST: https://dust.leeds.ac.uk/

So far: DA with Particle Filters and
(Ensemble/Unscented) Kalman Filters.

Towards full, real-time crowd models

... and eventually cities

- dust Blog Research Publications Presentations n
UNIVERSITY OF LEEDS

Project Publications and Documentation

The following publications report on the current progress of the DUST project or on related activities
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Conclusion

We need better estimates of the ambient population:

More accurate / reliable / detailed data sources

Methods / models to create a more holistic representation
Towards a comprehensive model of the ambient population

Ambient Populations for Smart City Simulations
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