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Abstract. Agent-based modelling (ABM) is ideally suited to modelling
the behaviour and evolution of social systems. However, there is in-
evitably a high degree of uncertainty in projections of social systems
– input data are noisy and sparse, and human behaviour is itself ex-
tremely uncertain – one of the key challenges facing the discipline is the
quantification of uncertainty within the outputs of agent-based models.
Without an adequate understanding of model uncertainty, or a means
to better constrain models to reality, simulations will naturally diverge
from the target system. This limits the value of their predictions. This
paper presents ongoing work towards methods that will (i) allow real-
time data to be assimilated into models to reduce the uncertainty of
their predictions and to (ii) quantify the amount of data (including over-
all volume as well as spatio-temporal granularity and regularity) that
are required for successful assimilation (i.e. to model the system within
an acceptable level of uncertainty). Specifically, this project emulates a
simple system of pedestrians who all move towards an exit. The paper
reports on initial experiments to constrain the range of possible model
outcomes using Bayesian inference techniques as implemented in a new
probabilistic programming library. Ultimately the project aims to pro-
vide valuable information about the number and type of sensors that
might be required to model movements of humans around real urban
systems.
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1 Introduction and Background

Individual-level modelling approaches, such as agent-based modelling (ABM),
are ideally suited to modelling the behaviour and evolution of social systems.
This is especially true in the context of modern ‘smart’ cities, where large vol-
umes of data, supported by innovative ‘big’ data analytics, can be leveraged
to better understand and capture the characteristics of the underlying systems.
However, there is inevitably a high degree of uncertainty in projections of so-
cial systems – input data are noisy and sparse, and human behaviour is itself
extremely uncertain – one of the key challenges facing the discipline is the quan-
tification of uncertainty within the outputs of these models.

This work focusses on the simulation of urban flows, i.e. the movement of
people around urban areas over relatively short time scales (minutes and hours).
It presents ongoing work towards methods that will (i) allow real-time data to be
assimilated into models to reduce the uncertainty of their predictions and (ii) to
quantify the amount of data (including overall volume as well as spatio-temporal
granularity and regularity) that are required for successful assimilation. In other
words, given some human system and a simulation of that system (we study the
movement of pedestrians in this case), how much data are required from the real
system in order to prevent the model uncertainties from causing the simulation
to rapidly diverge from reality? With too little data it will be impossible to
reliably constrain the model to reality, but how much is too little? Is one well-
placed footfall counter sufficient to capture the dynamics of the system, or in
reality would it be necessary to track the actual movements of a large proportion
of the individual people? The hypothetical model used here is a simple system
of pedestrians, each of whom move from an entrance towards one of two exits.
This is analogous to a train arriving at a train station and passengers moving
across the concourse to leave. The model environment is illustrated in Figure 1.

Very limited prior work has been conducted in this area. Some authors have
attempted to conduct data assimilation, but use agent-based models that are
simple in the extreme [5, 7]. Here, a more advanced model will be used in order
to test how well the various methods handle complex features such as emergence
and feedback. Others have developed more complex agent-based models [1] but
those must remain mathematically coupled to an aggregate proxy model which
limits the flexibility of the underlying agent-based model. The most similar work
is that of [6], who attempt to assimilate data into a model of peoples’ movement
in buildings. They do this by running an ensemble of models and re-starting
each one using new input conditions that are created each time new data become
available. The main difference between the approach in [6] and this paper is that
here the aim is to eventually develop methods that are able to assimilate new
data that automatically alter the state of the simulation while it is running. This
is more analogous with data assimilation techniques in other fields [4].
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Fig. 1: A snapshot of the simple, hypothetical model that is used here. Agents
arrive from the green entrances on the left and move towards the red exits on
the right.

2 Methods

2.1 Overall Approach

This paper presents a work in progress, whose overall proposed approach is to:

1. Develop a agent-based simulation of pedestrian movements from an entrance
to an exit using a simple social forces framework (similar to [3]) to control
the behaviour of the agents (see Figure 1);

2. Run the simulation to generate hypothetical ‘truth’ data, our equivalent real-
ity created with synthetic data. We assume this equivalent reality represents
the real underlying system. We sample from this in a manner analogous to
that of using sensors of peoples’ movements to sample from the real world;

3. Re-run the simulation with a different random seed and use samples of vary-
ing resolution from the ‘truth’ data to reduce the uncertainty of the new
simulation;

4. Quantify the volume (total number of samples), granularity (amount of ag-
gregation) and regularity (the number of samples per time period) that are
required to successfully model the hypothetical ‘real’ data.

This paper presents the preliminary results up to stage 3, with the ultimate
aim of quantifying the amount of data required to successfully constrain the
simulation being immediate future work.
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2.2 Preliminary Results: Constraining Model Uncertainty

Our initial experiments use a prototype probabilistic programming library to
perform parameter estimation using Bayesian inference (see [2] for a useful dis-
cussion about probabilistic programming and Bayesian inference). This work is
a precursor to performing data assimilation (i.e. step 4). The probabilistic pro-
gramming approach treats the pedestrian simulation as a black box, whose only
input is a list of random numbers that are used in the simulation whenever a
probabilistic decision is made and whose output is the number of agents in the
system at each time step. All internal simulation parameters are fixed. The sim-
ulation output is deterministic given the same input, but different inputs result
in different outputs, and so stochastic simulations can be performed by choosing
the input at random. Figure 2 illustrates the method.

We create truth data, i.e. agent counts over time, from a single model run
using a model input (a list of random decimal numbers) sampled from a Gaus-
sian distribution. Then, using a noisy observation of the truth data, we use the
probabilistic programming library to create a Bayesian network from which we
can compute the posterior distribution of the input given the noisy observation.
We then sample from this distribution using Metropolis-Hastings, resulting in
an ensemble of model realisations in which the uncertainty of the input, and
hence the output, is constrained.
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Fig. 2: An illustration of the procedure to perform parameter estimation.
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Figure 3 compares the results of the sampling with and without the incor-
poration of the truth data. It is clear that when the Bayesian network makes
use of the observations from the ‘truth’ model, the output of each model (i.e.
sample of the posterior distribution) is much more similar to the truth data.
In other words, the procedure is more accurately estimating the list of random
numbers (the prior distribution) that were initially used as input to generate the
‘truth’ data. Although this result is not of value in isolation, it is very useful as a
proof-of-concept. It shows that Bayesian inference on an agent-based model that
has reasonably complex characteristics (namely the emergence of crowding due
to agent interactions) is able to perform parameter estimation. More rigorous
data assimilation is a relatively small step.
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(a) constrained to observations
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Fig. 3: Results of sampling the posterior with observations (3a) and without
(3b). When the ‘truth’ data are used to constrain the posterior distribution, the
sampling routine is much better able to estimate the input model state, so the
outcomes of the samples are much closed to the ‘truth‘ data.

3 Link to ABMUS Workshop Themes

This paper addresses a core aspect of the ABMUS workshop theme; that of the
trust that we can have in model outputs. The conference recognises challenges
in “designing, developing and implementing trusted models that can be used
by industry and governments to enhance decision-making”. By adapting existing
methods that are aimed at reducing uncertainty in models through the incorpo-
ration of up-to-date data, this work advances the methodology towards more a
rigorous representation of real urban systems that will be more acceptable for
policy use.
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