# Up-scaling a Spatial Survey with Propensity Score Matching

### **Towards larger-scale analysis**

**Nick Malleson**, Eric Wanjau, Alexis Comber, Kristina Bratkova, Hang Nguyen Thi Thuy, Thanh Bui Quang, Phe Hoang Huu and Minh Kieu



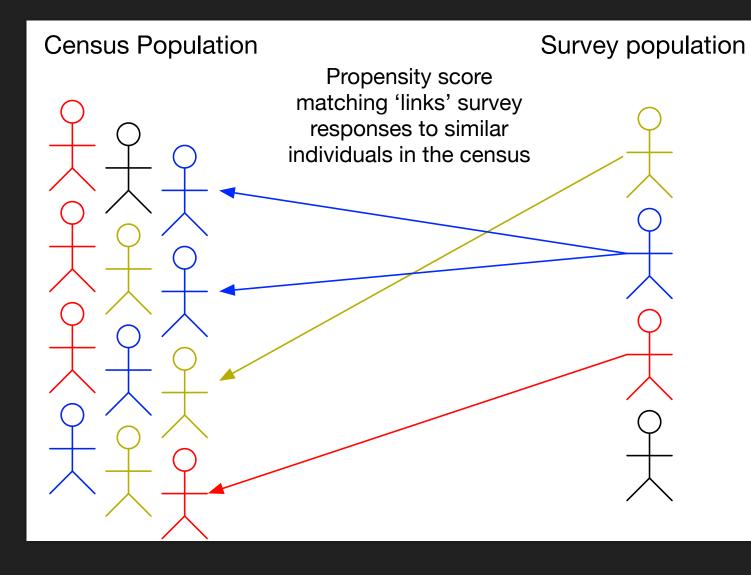
We have our survey (~30,000 people)
 But that is only ~0.6% of the Hanoi population
 Issues with bias and sparse geography
 Would like to estimate how the survey results might vary across the city

### Aims

OUpscale the survey to make it more representative (larger sample and less bias)

- Combine the census microdata and the survey to create a rich, synthetic population
- O Better understand the possible implications of a motorbike ban
- O (Work in progress!)

### (Synthetic Populations)


• Can combine aggregate data with surveys to create individual-level synthetic populations

OStrong expertise @ University of Leeds

OBut here we have the census micro-data so no need to create a synthetic population

#### Method: Propensity Score Matching (PSM)

Find individuals in the survey who are similar to individuals in the census



### **Propensity Score Matching**

• First calculate the propensity score
• Common in medicine

• Converts observational studies (with non-random sampling) to experimental studies

• Tries to balance two groups — 'control' and 'treatment' — so that they have similar characteristics.

• Allows differences to be attributed to the effect of the treatment, rather than to differences in the two groups

### Linking method

# • We don't care about a 'treatment', we just use the score as a way to link the two groups

OCurrent shared attributes:

OSex

OAge (6 groups)

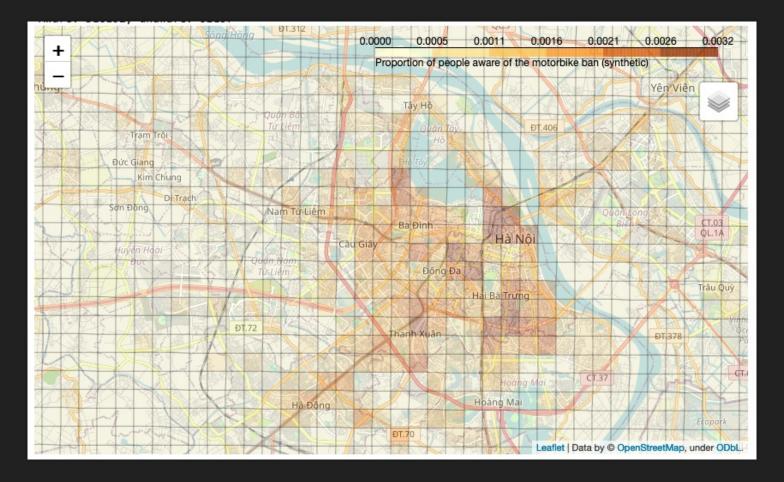
• House ownership (owned, rented, other)

• Future work: more! (including geography)

### Linking method

• Following Morrissey et al (2015) and Spooner (2021)

- 1: Assign treatment (census) and control (survey) groups
- 2: Calculate the propensity score
  - "probability of treatment assignment conditional on observed baseline characteristics" (<u>Austin 2011</u>)
  - "most often estimated using a logistic regression model, in which treatment status is regressed on observe baseline characteristics" (<u>Austin 2011</u>)


• Here we use a logistic classifier in scikit-learn (Luvsandorj, Z., 2021).

• 3: Nearest-neighbour algorithm selects individuals in the survey who are close to those in the census

O Using scikit-learn Nearest Neighbors class.

## Preliminary Results (1)

Awareness of a possible motorbike ban



## Preliminary Results (2)

Opinion on the possible ban



### **Summary & Conclusions**

- Better understand residents' transport opinions and behaviours
- Use propensity score matching to up-scale a travel survey
- Explore awareness and opinion on a motorbike ban
- CAVEAT: Currently too few factors considered, links between the census and the survey are not sufficiently nuanced

#### Next steps:

- Improve census-survey link to be more detailed
- Take spatial location into account
- Other features of the survey to explore: e.g. aspirational vehicle ownership, journeys, public transport, etc.