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Abstract24

This paper describes the novel development and application of a multi-scale geographically weighted25

discriminant analysis (MSGWDA). This is applied to a case study of survey data of attitudes26

to a proposed motorbike / scooter ban in Han Noi, Vietnam. It uses discriminant analysis to27

examine attitudes to the ban in relation to travel purposes, distances, respondent age and so on.28

The main part of the paper focuses on describing the novel MSGWDA approach, and the results29

indicate the varying scales of relationship between the different input variables and the categorical30

responses variable. The paper also reflects on the pervasive logic of the approaches used to fit31

multiscale geographically weighted bandwidths (for example in regression). These have historically32

been based on the iterative back-fitting approaches used in GAMs, but risk missing potentially33

important variable interactions amongst un-evaluated bandwidths because of the sequence of their34

application. It is argued that although pragmatic in the 1990s, it may be possible to apply more35

deterministic approaches with increased memory and readily accessible computing power in order to36

better navigate such highly dimensional search spaces.37
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1 Introduction43

This paper describes an approach for classification using a novel multi-scale geographically44

weight discriminant analysis (MS-GWDA). Discriminant analysis (DA) or discriminant45

function analysis [6] as generalised by Rao [15], is a commonly used technique for predicting46

membership or class for discrete groups as an alternative to multinomial logistic regression47

[11]. More recently DA has recently gained much attention in the context of machine learning48

[10, 12] and real time analyses [16, 4] because it can be used as an information learning49

technique as well as classification, particularly in the context of pattern recognition.50

Conceptually, in DA the independent data used as input to discriminant analysis can be51

thought of having been drawn from different populations of each class [2]. The discriminant52

functions are extracted from independent variables and are then used to generate class53

membership probabilities for each observation. If there are k groups, the aim is to extract k54

discriminant functions. Each observation is assigned to the class j for which value for the55

discriminant function for the group is the smallest, thereby determining which population56

each observation is likely to have come from. Under the assumption that the data are57

multivariate normal, then if
∑

j is the variance-covariance matrix for the members of class58

j, q is the number of predictor variables in x, µj is the mean vector for the observations in59

class j, and pj is the prior membership probability of class j, the linear assignment (linear60

discriminant analysis, LDA) multivariate Gaussian decision rule can be written as:61

k = arg maxj∈(1,...,m)

[
pj

1
(2π|Σj |)q\2 exp

(
−1

2(x− µj)′
∑−1

j
x− µj)

)]
(1)62

LDA was extended from the linear to the quadratic case by Marks and Dunn [13]. They63

and Wahl and Kronmal [17] examined the behaviour of linear and quadratic discriminant64

function using data with unequal covariances. In cases where the samples are small, the65

linear DA function has been found to provide more reliable assignment, whereas for large66

samples, the quadratic DA function may be preferred.67

DA was further extended to the spatial case by [2] who proposed a geography weighted68

DA (GWDA). In a GWDA, the idea is that the decision to allocate an observation to group69

or population is made whilst taking the geographic location of the observation into account.70

Whereas a standard DA (LDA and QDA) uses the mean vector and covariance matrix, a71

GWDA uses geographically weighted means and covariances as described in Brunsdon et al72

[1] and Fotheringham et al [7]. It uses the same geographical weighted framework as GWR,73

in which a series of local models are constructed at locations through the study area rather74

than one global model. In these, observations falling under a moving window or kernel are75

weighted by their distance to the observation location and used to construct the local model.76

The key challenge in any geographically weighted model is the determination of the size of77

the kernel or bandwidth. A standard GWR identifies a single optimal bandwidth or spatial78

scale over which the process under investigation is assumed to vary. This is usually done79

through some evaluation of different bandwidths using cross validation or a model parsimony80

measure such a s AIC.81

However, thinking around geographically weighted frameworks and specifically geograph-82

ically weighted regression (GWR) has matured considerably in recent years. This has driven a83

number of developments and extensions to the original GWR. Not least of these is multiscale84

GWR (MSGWR), which seeks to identify variable specific bandwidths rather than using85

a single best on average bandwidth to construct local models. The idea is that individual86

response-to-predictor relationships may operate over different spatial scales and the use of87
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a single bandwidth in a standard GWR may under- or over-estimate those. As a result,88

the recommended approach for any GWR is to first undertake a MSGWR to determine89

these variable specific scales, in order to guide further model choice [5]. This, as is nicely90

summed up by Oshan et al [14], eliminates the need for predictor-response relationships to91

vary at the same spatial scale, can reduce over-fitting and bias in the parameter estimates,92

and can overcome local collinearity. Thus, MGWR has been suggested as the default GWR93

approach [5]. Such thinking and logic has potential relevance for all geographically weighted94

frameworks, including geographically weighted discriminate analysis, hence the method95

proposed in this paper96

2 Multiscale Geographically Weighted Discriminant Analysis97

A GWDA extends QDA and LDA into geographically weighted methods. Here the decision98

population probabilities now depend on the spatial location of the observation – ie the the99

variance-covariance matrix
∑

j , the prior membership probabilities of class j, pj or the µj100

the mean vector for the observations in class j, are assumed to vary with spatial location101

u. Thus, the probabilities used to derive the decision rules are conditional on u, reworking102

Equation 1 above to estimate the local likelihoods for the population models:103

fp(x|u) = 1
(2π|Σj(u)|)q/2 exp

(
−1

2(x− µj(u))′
∑−1

j
(u)(x− µj(u))

)
(2)104

MSGWDA extends GWDA but allows the bandwidths for each input parameter to105

vary individually. The key objective in all multiscale geographically weighted models is106

to determine the matrix of parameter specific weights. These in this case will be used to107

weight each input variable at location u, as defined by the kernel bandwidth. As an example,108

Figure 1 shows some of the data from the case study described below, with the shading109

indicating the different bandwidths and potential scales of relationship between the grouping110

/ classification and different variables, at the location being considered.111

3 Case study: Travel Survey in Ha Noi112

Ha Noi like many major cities in emerging economies, suffers serious traffic congestion and113

air pollution due to rapid urbanization rates, increases in private transport. In Ha Noi,114

motorbikes are the preferred transportation mode: almost everyone in the city owns a115

motorbike. In 2015, Ha Noi had 4.9 million motorbikes and 0.5 million cars and 11 million116

motorbikes are projected by 2025. As public transport does not meet the city’s requirements,117

increases in personal traffic are inevitable, resulting in acute welfare problems, especially air118

quality. Pollution is chronic, with PM2.5 and ozone concentration regularly exceeding safe.119

As a result the government in Vietnam is exploring the possibility of implementing a120

ban that will stop motorised scooters from entering the city centre of Ha Noi. A survey has121

been undertaken to capture data on the travel behaviour and preferences of residents in Ha122

Noi. This includes information on trips made (origins and destinations), their frequency,123

the transport modes used for different trips, the reasons for those modal choices as well124

as demographic information about respondents’ home locations, and critically respondent125

attitudes concerning the proposed travel ban and how they would respond to it. This126

paper explores the survey responses regarding the ban and the factors associated with those127

responses in order to illustrate a multiscale geographically weighted discriminant analysis.128

CVIT 2016
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Figure 1 An illustration of the different adaptive bandwidths, shaded in cyan (30%), yellow
(70%), blue (90%) and red (100%), for 4 different variables, for a location marked in black, with an
OpenStreetMap backdrop.

Data from some 1191 respondents was obtained and a subset of their responses was used129

in the analyses as described below. Specifically the aim was to examine create a MSGWDA130

of attributed to the proposed van on motorised scooters from categorical variables describing:131

respondent age group;132

respondent gender;133

the purpose of the main regular journey they make;134

the network distance of that journey, as derived from a shortest path analysis of OSM135

route data with snap distances.136

The resident locations are shown in Figure 2.137

To demonstrate the MSGWDA approach combinations of adaptive bandwidth sizes for138

each variable were defined as sequences running from 20% to 100% in steps of 10%. For139

4 variables, this resulted in 94 bandwidth combinations to evaluate. Each combination of140

variable specific bandwidths was used to wight inputs into a linear discriminant analysis141

function (lda part of the MASS R package). For simplicity a boxcar weighting was used,142

generating weights of 1 for observations underneath the kernel and 0 for those outside. The143

were used to create a locally weighted LDA at each observation location in the study area,144

and each local, under each combination of bandwidths model was used to predict make a145

local classification prediction. The whole map set of classification predictions were then146

evaluated and metrics describing classification reliability were extracted (including overall147

accuracy, Kappa etc). The best performing combinations of bandwidths was then identified.148

4 Results149

Two results are used to illustrate the potential inferential advantages of the MSGWDA: an150

ordinary global LDA and a novel multiscale GWDA. A geographically weighted LDA was not151
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Figure 2 The motorbike ban attitudes of the survey respondents, with a heatmap showing the
density of respondents, and a Stamen toner backdrop.

undertaken because of the inability of the gwda function in the GWmodel to handle categorical152

predictor variables.153

The standard LDA model is relatively weak, with an overall accuracy of 0.548 and a154

Kappa statistic of 0.115. The correspondence table is shown in Table 1 and indicates high155

specificity (ie good a true negatives) and low sensitivity (ie poor at true positives).156

Observed
Predicted agree disagree neutral
agree 42 24 24
disagree 222 585 238
neutral 14 16 26
Table 1 The correspondence matrix of the LDA classification of survey responses regarding a

proposed motobike ban in the city centre.

The MSGWDA examined combinations of adaptive bandwidths for each variable. For each157

of these, a geographically weighted LDA model was created at each of the 1191 respondent158

home locations. At each location weighted LDA model was used to predict the motorbike159

ban attitude, such that a vector of 1191 predicted ban attitudes were created from 1191 local160

models. For each set of predictions, a correspondence matrix of predicted against observed161

ban attitudes was created an evaluated using overall accuracy and Kappa statistics. The best162

performing combinations were found to be the following sets of bandwidths when evaluated163

using Overall accuracy and Kappa statistics:164

Overall accuracy: gender 80%, trip purpose 50%, age 40% and network distance 10%.165

Kappa statistic: gender 40%, trip purpose 20%, age 20% and network distance 10%.166

These are illustrated in Figure 3 for the same example location as in Figure 2. Here167

we can see the different bandwidths indicated by different fit or accuracy measures. The168

CVIT 2016
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Figure 3 The best fitting multiscale bandwidths when evaluated using Overall accuracies and
Kappa statistics.

correspondences are summarised in Table 2 and result in Overall accuracies and Kappa169

statistics of 0.579, 0.199 and 0.575, 0.207, respectively.170

Overall Kappa
Predicted agree disagree neutral agree disagree neutral
agree 59 27 22 65 37 30
disagree 199 573 209 191 556 194
neutral 20 25 57 22 32 64
Table 2 The correspondence matrices of the MSDWDA classifications of survey responses, when

evaluated using Overall accuracy and Kappa statistics.

5 Discussion171

The MSGWDA approach improves the classification accuracy compared to a standard global172

LDA. This is to be expected and is a feature of all geographically weighted models. Of more173

potentially interest and relevance to this specific case study, are the variations in the spatial174

scale at which categorical data are associated with the outcome: whether evaluated by Kappa175

or Overall accuracy, the gender variable tends towards the global, with trip purpose, age176

and distance highly localised in their effect. This understanding of scale will inform future177

project work in relation to the transport and behaviour simulation models being developed178

within this project. The MSGWDA results are key to that understanding.179

There are a number of areas of further work required to exploit the functionality of this180

MSGWDA apprach.181

1. The bandwidths in this poof of concept were at relatively coarse intervals, evaluating182

different adaptive bandwidth sizes in steps of 10%. This needs to be refined and potentially,183

potentially using a refined search heuristic and consideration of bandwidth interactions –184

see discussion point below.185

2. Bandwidths will be extended to the fixed distance case.186
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3. The weighting of categorical variables was done using a box car approach, with the187

response variables in observations falling under the kernel simply weighted to 1. This188

needs to be explored in more depth, especially if the data variables are ordered in some189

way.190

Whilst the results of the MSGWDA are interesting and potential refinement on both191

standard approaches top DA and GWDA in terms of inference and understanding, perhaps192

the major discussion point to arise from this work has been due to the need to unpick the193

mechanisms of multiscale geographically weighted models. The key question arising from the194

back-fitting methods they employ is this:195

How confident can we be that that potentially important variable interactions are not196

being missed by this fix the first variable bandwidth, then fix the second, then the next,197

etc, etc . . . approach, rather than looking at all possible combinations of bandwidths?198

The answer to this is uncertain: the multivariate bandwidth search space to determine199

the optimal set of weights to be passed to the local model at location on u is potentially200

huge. In the past, pragmatic short-cuts were needed to be able to move through it. But201

times and computing power have both changed.202

The original MSGWR [18, 8] and subsequent refinements in other packages use a back-203

fitting algorithm to determine optimal parameter specific bandwidths and thus weights at204

each location, for each variable. This was based on the approach taken in generalized additive205

models (GAMs) [9, 3]. Essentially what these do is to determine the optimal set of bandwidths206

is to determine the bandwidth for each variable sequentially, using smoothing functions207

that assume the other terms are known. We suspect that this approach was developed by208

the GAM team as a pragmatic way overcoming the difficulty in searching through a highly209

dimension solution space comprised of all possible bandwidths for all possible variables. It210

was then adopted by the initial work into multiscale geographically weighted regression. The211

reason is the high dimensionality of the solution search space: given explanatory 5 variables,212

in a dataset with 2000 observations and an adaptive bandwidth approach (ie based on the213

number of observations to include rather than a fixed distance), this would potentially require214

20006 = 6.4× 1019 solutions to be evaluated for a regression (including the intercept) and215

20005 = 3.2× 1016 for a discriminant analysis216

In this research, with potentially greater computing power available than at the time217

the GAM and MSGWR approaches were being developed, a grid of possible combinations218

of parameter specific bandwidths was used to demonstrate the MSGWDA, as described.219

Here the aim was to demonstrate how MSGWDA could be undertaken and to explore some220

of the issues arising from this. Also, this is philosophically preferable: the specification of221

musicale bandwidths a parameter at a time potentially ignores variable interactions at scales222

not considered in previously fixed bandwidths.223

Future work will definitely explore this in greater detail!224
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